PURPOSE: This study aims at developing novel core-shell poly(methylmethacrylate) (PMMA) nanoparticles as a delivery system for protein vaccine candidates. MATERIALS AND METHODS: Anionic nanoparticles consisting of a core of PMMA and a shell deriving from Eudragit L100/55 were prepared by an innovative synthetic method based on emulsion polymerization. The formed nanoparticles were characterized for size, surface charge and ability to reversibly bind two basic model proteins (Lysozyme, Trypsin) and a vaccine relevant antigen (HIV-1 Tat), by means of cell-free studies. Their in vitro toxicity and capability to preserve the biological activity of the HIV-1 Tat protein were studied in cell culture systems. Finally, their safety and immunogenicity were investigated in the mouse model. RESULTS: The nanoparticles had smooth surface, spherical shape and uniform size distribution with a mean diameter of 220 nm. The shell is characterized by covalently bound carboxyl groups negatively charged at physiological pH, able to reversibly adsorb large amounts (up to 20% w/w) of basic proteins (Lysozyme, Trypsin and HIV-1 Tat), mainly through specific electrostatic interactions. The nanoparticles were stable, not toxic to the cells, protected the HIV-1 Tat protein from oxidation, thus preserving its biological activity and increasing its shelf-life, and efficiently delivered and released it intracellularly. In vivo experiments showed that they are well tolerated and elicit strong immune responses against the delivered antigen in mice. CONCLUSIONS: This study demonstrates that these new nanoparticles provide a versatile platform for protein surface adsorption and a promising delivery system particularly when the maintenance of the biologically active conformation is required for vaccine efficacy.

Preparation and Characterization of Innovative Protein-coated Poly(Methylmethacrylate) Core-shell Nanoparticles for Vaccine Purposes

CASTALDELLO, ARIANNA;ALTAVILLA, GIUSEPPE;CAPUTO, ANTONELLA;
2007

Abstract

PURPOSE: This study aims at developing novel core-shell poly(methylmethacrylate) (PMMA) nanoparticles as a delivery system for protein vaccine candidates. MATERIALS AND METHODS: Anionic nanoparticles consisting of a core of PMMA and a shell deriving from Eudragit L100/55 were prepared by an innovative synthetic method based on emulsion polymerization. The formed nanoparticles were characterized for size, surface charge and ability to reversibly bind two basic model proteins (Lysozyme, Trypsin) and a vaccine relevant antigen (HIV-1 Tat), by means of cell-free studies. Their in vitro toxicity and capability to preserve the biological activity of the HIV-1 Tat protein were studied in cell culture systems. Finally, their safety and immunogenicity were investigated in the mouse model. RESULTS: The nanoparticles had smooth surface, spherical shape and uniform size distribution with a mean diameter of 220 nm. The shell is characterized by covalently bound carboxyl groups negatively charged at physiological pH, able to reversibly adsorb large amounts (up to 20% w/w) of basic proteins (Lysozyme, Trypsin and HIV-1 Tat), mainly through specific electrostatic interactions. The nanoparticles were stable, not toxic to the cells, protected the HIV-1 Tat protein from oxidation, thus preserving its biological activity and increasing its shelf-life, and efficiently delivered and released it intracellularly. In vivo experiments showed that they are well tolerated and elicit strong immune responses against the delivered antigen in mice. CONCLUSIONS: This study demonstrates that these new nanoparticles provide a versatile platform for protein surface adsorption and a promising delivery system particularly when the maintenance of the biologically active conformation is required for vaccine efficacy.
File in questo prodotto:
File Dimensione Formato  
Voltan 2007.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 460.68 kB
Formato Adobe PDF
460.68 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2468549
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 29
  • OpenAlex ND
social impact