The use of the anthracycline epirubicin (EPI) is limited by the risk of a dilatory congestive heart failure that develops as a consequence of induction of a mitochondrial-dependent cardiomyocyte and endothelial cell apoptosis. Nitric oxide (NO) increases the antitumoral activity of several chemotherapics, while it provides protection against apoptosis induced by oxidative stress both in endothelial cells and cardiomyocytes. The aim of the present study was to investigate whether the addition of an NO-releasing moiety to a pegylated derivative of EPI (p-EPI-NO) confers to the drug a different cytotoxic profile against tumoral and normal cells. The cytotoxic profile of the drugs was investigated in Caco-2 cell line, in embryonic rat heart-derived myoblasts (H9c2), in adult cardiomyocytes, and in endothelial cells (HUVEC). p-EPI-NO was more efficient than EPI in inducing Caco-2 cell apoptosis, while it spared HUVEC, H9c2 cells and adult cardiomyocytes from EPI-induced toxicity. Exposure of cells to p-EPI-NO resulted in a NO-mediated inhibition of cellular respiration followed by mitochondrial membrane depolarization and cell death in Caco-2 cells but not in HUVEC and H9c2 cells in which mitochondrial membrane polarization was maintained at the expense of glycolytically generated ATP. These findings indicate that addition of an NO-releasing moiety to p-EPI increases the anti-neoplastic activity of the drug, while it reduces its cytotoxicity against nonneoplastic cells.

Nitric oxide modulates pro- and anti-apoptotic properties of chemotherapy agents: the case of NO-pegylated epirubicin

PASUT, GIANFRANCO;VERONESE, FRANCESCO;
2006

Abstract

The use of the anthracycline epirubicin (EPI) is limited by the risk of a dilatory congestive heart failure that develops as a consequence of induction of a mitochondrial-dependent cardiomyocyte and endothelial cell apoptosis. Nitric oxide (NO) increases the antitumoral activity of several chemotherapics, while it provides protection against apoptosis induced by oxidative stress both in endothelial cells and cardiomyocytes. The aim of the present study was to investigate whether the addition of an NO-releasing moiety to a pegylated derivative of EPI (p-EPI-NO) confers to the drug a different cytotoxic profile against tumoral and normal cells. The cytotoxic profile of the drugs was investigated in Caco-2 cell line, in embryonic rat heart-derived myoblasts (H9c2), in adult cardiomyocytes, and in endothelial cells (HUVEC). p-EPI-NO was more efficient than EPI in inducing Caco-2 cell apoptosis, while it spared HUVEC, H9c2 cells and adult cardiomyocytes from EPI-induced toxicity. Exposure of cells to p-EPI-NO resulted in a NO-mediated inhibition of cellular respiration followed by mitochondrial membrane depolarization and cell death in Caco-2 cells but not in HUVEC and H9c2 cells in which mitochondrial membrane polarization was maintained at the expense of glycolytically generated ATP. These findings indicate that addition of an NO-releasing moiety to p-EPI increases the anti-neoplastic activity of the drug, while it reduces its cytotoxicity against nonneoplastic cells.
2006
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2467344
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 39
social impact