OBJECTIVE-Nitric oxide (NO) is a key metabolic and vascular regulator. Its production is stimulated by insulin. A reduced urinary excretion of NO products (NOx) is frequently found in type 2 diabetes, particularly in association with nephropathy. However, whether the decreased NOx excretion in type 2 diabetes is caused by a defective NOx production from arginine in response to hyperinsulinemia has never been studied. RESEARCH DESIGN AND METHODS-We measured NOx fractional (FSR) and absolute (ASR) synthesis rates in type 2 diabetic patients with diabetic nephropathy and in control subjects, after L-[(15)N(2)-guanidino]-arginine infusion, and use of precursor-product relationships. The study was conducted both before and after an euglycemic hyperinsulinemic (similar to 1,000-1,200 pmol/l) clamp. RESULTS-In type 2 diabetes, NOx FSR was reduced both under basal (19.3 +/- 3.9% per day, vs. 22.9 +/- 4.5% per day in control subjects) and hyperinsulinemic states (24.0 +/- 5.6% per day, vs. 37.9 +/- 6.4% per day in control subjects; P < 0.03 by ANOVA). Similarly, in type 2 diabetes, NOx ASR was lower than in control subjects under both conditions (basal, 0.32 +/- 0.06 vs. 0.89 +/- 0.34 mol per day; hyperinsulinemia, 0.35 +/- 0.07 vs. 1.15 +/- 0.38 mol per day; P = 0.01 by ANOVA). In type 2 diabetes, the ability of insulin to stimulate both the FSR (4.7 +/- 3.2% per day) and the ASR (0.03 +/- 0.04 mol per day) of NOx was several-fold lower than that in control subjects (15.0 +/- 2.9% per day and 0.25 +/- 0.07 mol per day, P < 0.03 and P < 0.02, respectively). Also the fraction of arginine flux converted to NOx (basal, 0.22 +/- 0.05% vs. 0.65 +/- 0.25%; hyperinsulinemia, 0.32 +/- 0.06% vs. 1.03 +/- 0.33%) was sharply reduced in the patients (P < 0.01 by ANOVA). CONCLUSIONS-In type 2 diabetic patients with nephropathy, intravascular NOx synthesis from arginine is decreased under both basal and hyperinsulinemic states. This defect extends the concept of insulin resistance to NO metabolism.

Nitric Oxide Synthesis Is Reduced in Subjects With Type 2 Diabetes and Nephropathy

TESSARI, PAOLO;MILLIONI, RENATO;AVOGARO, ANGELO;
2010

Abstract

OBJECTIVE-Nitric oxide (NO) is a key metabolic and vascular regulator. Its production is stimulated by insulin. A reduced urinary excretion of NO products (NOx) is frequently found in type 2 diabetes, particularly in association with nephropathy. However, whether the decreased NOx excretion in type 2 diabetes is caused by a defective NOx production from arginine in response to hyperinsulinemia has never been studied. RESEARCH DESIGN AND METHODS-We measured NOx fractional (FSR) and absolute (ASR) synthesis rates in type 2 diabetic patients with diabetic nephropathy and in control subjects, after L-[(15)N(2)-guanidino]-arginine infusion, and use of precursor-product relationships. The study was conducted both before and after an euglycemic hyperinsulinemic (similar to 1,000-1,200 pmol/l) clamp. RESULTS-In type 2 diabetes, NOx FSR was reduced both under basal (19.3 +/- 3.9% per day, vs. 22.9 +/- 4.5% per day in control subjects) and hyperinsulinemic states (24.0 +/- 5.6% per day, vs. 37.9 +/- 6.4% per day in control subjects; P < 0.03 by ANOVA). Similarly, in type 2 diabetes, NOx ASR was lower than in control subjects under both conditions (basal, 0.32 +/- 0.06 vs. 0.89 +/- 0.34 mol per day; hyperinsulinemia, 0.35 +/- 0.07 vs. 1.15 +/- 0.38 mol per day; P = 0.01 by ANOVA). In type 2 diabetes, the ability of insulin to stimulate both the FSR (4.7 +/- 3.2% per day) and the ASR (0.03 +/- 0.04 mol per day) of NOx was several-fold lower than that in control subjects (15.0 +/- 2.9% per day and 0.25 +/- 0.07 mol per day, P < 0.03 and P < 0.02, respectively). Also the fraction of arginine flux converted to NOx (basal, 0.22 +/- 0.05% vs. 0.65 +/- 0.25%; hyperinsulinemia, 0.32 +/- 0.06% vs. 1.03 +/- 0.33%) was sharply reduced in the patients (P < 0.01 by ANOVA). CONCLUSIONS-In type 2 diabetic patients with nephropathy, intravascular NOx synthesis from arginine is decreased under both basal and hyperinsulinemic states. This defect extends the concept of insulin resistance to NO metabolism.
2010
File in questo prodotto:
File Dimensione Formato  
Nitric oxide synthesis is reduced in subjects with type 2 diabetes and nephropathy.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 179.87 kB
Formato Adobe PDF
179.87 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2467167
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 151
  • ???jsp.display-item.citation.isi??? 136
  • OpenAlex ND
social impact