Background: In non-human primates grasp-related sensorimotor transformations are accomplished in a circuit involving the anterior intraparietal sulcus (area AIP) and both the ventral and the dorsal sectors of the premotor cortex (vPMC and dPMC, respectively). Although a human homologue of such a circuit has been identified whether activity within this circuit varies depending on handedness has yet to be investigated. Methodology/Principal Findings: We used functional magnetic resonance imaging (fMRI) to explicitly test how handedness modulates activity within human grasping-related brain areas. Right- and left-handers subjects were requested to reach towards and grasp an object with either the right or the left hand using a precision grip while scanned. A kinematic study was conducted with similar procedures as a behavioral counterpart for the fMRI experiment. Results from a factorial design revealed significant activity within the right dPMC, the right cerebellum and AIP bilaterally. The pattern of activity within these areas mirrored the results found for the behavioral study. Conclusion/Significance: Data are discussed in terms of an handedness-independent role for the right dPMC in monitoring hand shaping, the need for bilateral AIP activity for the performance of precision grip movements which varies depending on handedness and the involvement of the cerebellum in terms of its connections with AIP. These results provide the first compelling evidence of specific grasping related neural activity depending on handedness.
Cortical activations in humans grasp-related areas depend on hand used and handedness
BEGLIOMINI, CHIARA;CASTIELLO, UMBERTO
2008
Abstract
Background: In non-human primates grasp-related sensorimotor transformations are accomplished in a circuit involving the anterior intraparietal sulcus (area AIP) and both the ventral and the dorsal sectors of the premotor cortex (vPMC and dPMC, respectively). Although a human homologue of such a circuit has been identified whether activity within this circuit varies depending on handedness has yet to be investigated. Methodology/Principal Findings: We used functional magnetic resonance imaging (fMRI) to explicitly test how handedness modulates activity within human grasping-related brain areas. Right- and left-handers subjects were requested to reach towards and grasp an object with either the right or the left hand using a precision grip while scanned. A kinematic study was conducted with similar procedures as a behavioral counterpart for the fMRI experiment. Results from a factorial design revealed significant activity within the right dPMC, the right cerebellum and AIP bilaterally. The pattern of activity within these areas mirrored the results found for the behavioral study. Conclusion/Significance: Data are discussed in terms of an handedness-independent role for the right dPMC in monitoring hand shaping, the need for bilateral AIP activity for the performance of precision grip movements which varies depending on handedness and the involvement of the cerebellum in terms of its connections with AIP. These results provide the first compelling evidence of specific grasping related neural activity depending on handedness.File | Dimensione | Formato | |
---|---|---|---|
Begliomini&al_2008.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
262.19 kB
Formato
Adobe PDF
|
262.19 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.