The theory of Schrödinger bridges for diffusion processes is extended to classical and quantum discrete-time Markovian evolutions. The solution of the path-space maximum entropy problems is obtained from the a priori model in both cases via a suitable multiplicative functional transformation. In the quantum case, nonequilibrium time reversal of quantum channels is discussed and space-time harmonic processes are introduced.

Discrete-time classical and quantum Markovian evolutions: Maximum entropy problems on path space

PAVON, MICHELE;TICOZZI, FRANCESCO
2010

Abstract

The theory of Schrödinger bridges for diffusion processes is extended to classical and quantum discrete-time Markovian evolutions. The solution of the path-space maximum entropy problems is obtained from the a priori model in both cases via a suitable multiplicative functional transformation. In the quantum case, nonequilibrium time reversal of quantum channels is discussed and space-time harmonic processes are introduced.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2463343
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 27
  • OpenAlex ND
social impact