A novel approach, validated by an analysis of barnase and chymotrypsin inhibitor, is introduced to elucidate the paramount role played by the geometry of the protein backbone in steering the folding to the native state. It is found that native states of proteins, compared with compact artificial backbones, have an exceedingly large number of conformations with a given amount of structural overlap with them; moreover, the density of overlapping conformations, at a given overlap, of unrelated proteins of the same length are nearly equal. These results suggest an extremality principle underlying protein evolution, which, in turn, is shown to be possibly associated with the emergence of secondary structures.

Protein Structures and Optimal Folding from a Geometrical Variational Principle

MARITAN, AMOS;SENO, FLAVIO
1999

Abstract

A novel approach, validated by an analysis of barnase and chymotrypsin inhibitor, is introduced to elucidate the paramount role played by the geometry of the protein backbone in steering the folding to the native state. It is found that native states of proteins, compared with compact artificial backbones, have an exceedingly large number of conformations with a given amount of structural overlap with them; moreover, the density of overlapping conformations, at a given overlap, of unrelated proteins of the same length are nearly equal. These results suggest an extremality principle underlying protein evolution, which, in turn, is shown to be possibly associated with the emergence of secondary structures.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2462593
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 122
  • OpenAlex ND
social impact