Two multistep extractions were achieved on porcine aortic tissues to obtain acellular matrices used for cardiac bioprostheses. The evaluation of structural modifications and the possible damage of extracellular matrix fibrous proteins were investigated by means of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Protein-water interactions and degradation temperatures were determined by TGA. DSC was used to characterize protein thermal transitions (glass transition and denaturation), which provided information on the dynamic structure of the aortic tissue components. Sodium dodecyl sulfate (SDS) extraction had a destructuring effect, while Triton and cholate treatments did not affect the structural integrity of either elastin and collagen. A DSC comparison showed that SDS destabilizes the collagen triple helical domain and swells the elastin network.
Thermal analysis characterization of aortic tissues for cardiac valve bioprostheses
GEROSA, GINO;CASAROTTO, DINO;SPINA, MICHELE
1999
Abstract
Two multistep extractions were achieved on porcine aortic tissues to obtain acellular matrices used for cardiac bioprostheses. The evaluation of structural modifications and the possible damage of extracellular matrix fibrous proteins were investigated by means of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Protein-water interactions and degradation temperatures were determined by TGA. DSC was used to characterize protein thermal transitions (glass transition and denaturation), which provided information on the dynamic structure of the aortic tissue components. Sodium dodecyl sulfate (SDS) extraction had a destructuring effect, while Triton and cholate treatments did not affect the structural integrity of either elastin and collagen. A DSC comparison showed that SDS destabilizes the collagen triple helical domain and swells the elastin network.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.