Here, a version of the Arnol’d conjecture, first studied by Conley and Zehnder, giving a generalization of the Poincaré-Birkhoff last geometrical theorem, is proved inside Viterbo’s framework of the generating functions quadratic at infinity. We give brief overviews of some tools that are often utilized in symplectic topology.

On Poincaré-Birkhoff periodic orbits for mechanical Hamiltonian systems on $T^*{\mathbb T}^n$

BERNARDI, OLGA;CARDIN, FRANCO
2006

Abstract

Here, a version of the Arnol’d conjecture, first studied by Conley and Zehnder, giving a generalization of the Poincaré-Birkhoff last geometrical theorem, is proved inside Viterbo’s framework of the generating functions quadratic at infinity. We give brief overviews of some tools that are often utilized in symplectic topology.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2456067
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact