We compactify M(atrix) theory on Riemann surfaces Sigma with genus g>1. Following [1], we construct a projective unitary representation of pi_1(Sigma) realized on L^2(H), with H the upper half-plane. As a first step we introduce a suitably gauged sl_2(R) algebra. Then a uniquely determined gauge connection provides the central extension which is a 2-cocycle of the 2nd Hochschild cohomology group. Our construction is the double-scaling limit N\to\infty, k\to-\infty of the representation considered in the Narasimhan-Seshadri theorem, which represents the higher-genus analog of 't Hooft's clock and shift matrices of QCD. The concept of a noncommutative Riemann surface Sigma_\theta is introduced as a certain C^\star-algebra. Finally we investigate the Morita equivalence.
Noncommutative Riemann surfaces
MATONE, MARCO;PASTI, PAOLO
1999
Abstract
We compactify M(atrix) theory on Riemann surfaces Sigma with genus g>1. Following [1], we construct a projective unitary representation of pi_1(Sigma) realized on L^2(H), with H the upper half-plane. As a first step we introduce a suitably gauged sl_2(R) algebra. Then a uniquely determined gauge connection provides the central extension which is a 2-cocycle of the 2nd Hochschild cohomology group. Our construction is the double-scaling limit N\to\infty, k\to-\infty of the representation considered in the Narasimhan-Seshadri theorem, which represents the higher-genus analog of 't Hooft's clock and shift matrices of QCD. The concept of a noncommutative Riemann surface Sigma_\theta is introduced as a certain C^\star-algebra. Finally we investigate the Morita equivalence.File | Dimensione | Formato | |
---|---|---|---|
tmr99_022.pdf
embargo fino al 31/12/2029
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso gratuito
Dimensione
197.09 kB
Formato
Adobe PDF
|
197.09 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.