Size-related changes of form in animals with periodically patterned body axes and post-embryonic growth discontinuously obtained throughout a series of moulting episodes cannot be accounted for by allometry alone. We address here the relationships between body size and number and size of appropriately selected structural units (e.g., segments), which may more or less closely approximate independent developmental units, or unitary targets of selection, or both. Distinguishing between units fundamentally involving one cell only or a small and fixed number of cells (e.g., the ommatidia in a compound eye), and units made of an indeterminate number of cells (e.g., trunk segments), we analyze and discuss a selection of body features of either kind, both in ontogeny and in phylogeny, through a review of current literature and meta-analyses of published and unpublished data. While size/number relationships are too diverse to allow easy generalizations, they provide conspicuous examples of the complex interplay of selective forces and developmental constraints that characterizes the evolution of arthropod body patterning.

Multi-scale relationships between numbers and size in the evolution of arthropod body features

MINELLI, ALESSANDRO;MARUZZO, DIEGO;FUSCO, GIUSEPPE
2010

Abstract

Size-related changes of form in animals with periodically patterned body axes and post-embryonic growth discontinuously obtained throughout a series of moulting episodes cannot be accounted for by allometry alone. We address here the relationships between body size and number and size of appropriately selected structural units (e.g., segments), which may more or less closely approximate independent developmental units, or unitary targets of selection, or both. Distinguishing between units fundamentally involving one cell only or a small and fixed number of cells (e.g., the ommatidia in a compound eye), and units made of an indeterminate number of cells (e.g., trunk segments), we analyze and discuss a selection of body features of either kind, both in ontogeny and in phylogeny, through a review of current literature and meta-analyses of published and unpublished data. While size/number relationships are too diverse to allow easy generalizations, they provide conspicuous examples of the complex interplay of selective forces and developmental constraints that characterizes the evolution of arthropod body patterning.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2452723
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 13
  • OpenAlex ND
social impact