Poly(ethylene glycol) (PEG) has been widely used to prolong the residence time of proteins in blood and to decrease their immunogenicity and antigenicity. A drawback of this polymer lies in its polydispersity that makes difficult the identification of the sites of protein modification. This is a mandatory requirement if a PEGylated protein should be approved as a drug. Here, a fast and reliable method is proposed to characterize proteins conjugated at the level of glutamine (Gln) residues using microbial transglutaminase (TGase). The novelty resides in the use of a monodisperse Boc-PEG-NH(2) for the derivatization that allows the direct identification of the sites of PEGylation by electrospray ionization mass spectrometry (ESI-MS). The procedure has been tested on three model proteins, namely, human granulocyte colony-stimulating factor, human growth hormone, and horse heart apomyoglobin. The Gln residues linked to the polymer chain were easily identified by ESI-MS and tandem MS analyses, demonstrating the advantage of using a monodisperse polymer in combination with mass spectrometry for an easy characterization of conjugated proteins. Interestingly, the PEGylation reaction led to the production only of mono- and bis-derivative products, indicating that the TGase-mediated PEGylation can be extremely selective and thus very useful for the derivatization of protein drugs.

Transglutaminase-mediated PEGylation of proteins: direct identification of the sites of protein modification by mass spectrometry using a novel monodisperse PEG

MERO, ANNA;SPOLAORE, BARBARA;FONTANA, ANGELO
2009

Abstract

Poly(ethylene glycol) (PEG) has been widely used to prolong the residence time of proteins in blood and to decrease their immunogenicity and antigenicity. A drawback of this polymer lies in its polydispersity that makes difficult the identification of the sites of protein modification. This is a mandatory requirement if a PEGylated protein should be approved as a drug. Here, a fast and reliable method is proposed to characterize proteins conjugated at the level of glutamine (Gln) residues using microbial transglutaminase (TGase). The novelty resides in the use of a monodisperse Boc-PEG-NH(2) for the derivatization that allows the direct identification of the sites of PEGylation by electrospray ionization mass spectrometry (ESI-MS). The procedure has been tested on three model proteins, namely, human granulocyte colony-stimulating factor, human growth hormone, and horse heart apomyoglobin. The Gln residues linked to the polymer chain were easily identified by ESI-MS and tandem MS analyses, demonstrating the advantage of using a monodisperse polymer in combination with mass spectrometry for an easy characterization of conjugated proteins. Interestingly, the PEGylation reaction led to the production only of mono- and bis-derivative products, indicating that the TGase-mediated PEGylation can be extremely selective and thus very useful for the derivatization of protein drugs.
2009
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2452688
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 84
  • ???jsp.display-item.citation.isi??? 73
social impact