Bacillus anthracis secretes two critical virulence factors, lethal toxin (LT) and edema toxin (ET). In this study, we show that murine bone marrow-derived dendritic cells (DC) infected with B. anthracis strains secreting ET exhibit a very different cytokine secretion pattern than DC infected with B. anthracis strains secreting LT, both toxins, or a nontoxinogenic strain. ET produced during infection selectively inhibits the production of IL-12p70 and TNF-alpha, whereas LT targets IL-10 and TNF-alpha production. To confirm the direct role of the toxins, we show that purified ET and LT similarly disrupt cytokine secretion by DC infected with a nontoxinogenic strain. These effects can be reversed by specific inhibitors of each toxin. Furthermore, ET inhibits in vivo IL-12p70 and IFN-gamma secretion induced by LPS. These results suggest that ET produced during infection impairs DC functions and cooperates with LT to suppress the innate immune response. This may represent a new strategy developed by B. anthracis to escape the host immune response.
Anthrax edema toxin cooperates with lethal toxin to impair cytokine secretion during infection of dendritic cells
MONTECUCCO, CESARE;
2005
Abstract
Bacillus anthracis secretes two critical virulence factors, lethal toxin (LT) and edema toxin (ET). In this study, we show that murine bone marrow-derived dendritic cells (DC) infected with B. anthracis strains secreting ET exhibit a very different cytokine secretion pattern than DC infected with B. anthracis strains secreting LT, both toxins, or a nontoxinogenic strain. ET produced during infection selectively inhibits the production of IL-12p70 and TNF-alpha, whereas LT targets IL-10 and TNF-alpha production. To confirm the direct role of the toxins, we show that purified ET and LT similarly disrupt cytokine secretion by DC infected with a nontoxinogenic strain. These effects can be reversed by specific inhibitors of each toxin. Furthermore, ET inhibits in vivo IL-12p70 and IFN-gamma secretion induced by LPS. These results suggest that ET produced during infection impairs DC functions and cooperates with LT to suppress the innate immune response. This may represent a new strategy developed by B. anthracis to escape the host immune response.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.