We study the thermally driven denaturation of a double-stranded polymer in the presence of a stretching force via Monte-Carlo simulations. When one strand only is stretched, the denaturation transition is first order, while when both strands are stretched, melting is second order. By revisiting the Poland-Scheraga model for DNA melting, we show that at room temperature, the most likely scenario is that DNA melts as it overstretches. Our results are in general agreement with the most recent experiments and suggest how varying temperature and stretching mode may help settle the question whether S-DNA exists or not.

Different pulling modes in DNA overstretching: A theoretical analysis

ORLANDINI, ENZO;SENO, FLAVIO;TROVATO, ANTONIO
2010

Abstract

We study the thermally driven denaturation of a double-stranded polymer in the presence of a stretching force via Monte-Carlo simulations. When one strand only is stretched, the denaturation transition is first order, while when both strands are stretched, melting is second order. By revisiting the Poland-Scheraga model for DNA melting, we show that at room temperature, the most likely scenario is that DNA melts as it overstretches. Our results are in general agreement with the most recent experiments and suggest how varying temperature and stretching mode may help settle the question whether S-DNA exists or not.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2449578
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact