Ultrastructural and physiological effects of exposure to 1 ppm and 5 ppm of cadmium (Cd) on cultured cells of Koliella antarctica, a green microalga from Antarctica, were investigated. The amount of Cd in the alga rose with the increase of the metal concentration in the growth medium and most Cd remained outside the cells, bound to the components of the cell walls. The increase of Cd in the microalga was concomitant with the decrease of other elements, mainly calcium (Ca). Exposure to 1 ppm Cd slowed culture growth by inhibiting cell division and also caused the development of some misshapen cells with chloroplast showing disordered thylakoids. However, this concentration did not substantially affect the chlorophyll (Chl) content or photosystem (PS) activity. At 5 ppm, Cd cell growth suddenly stopped and some cells lysed. After a week of Cd contamination, the cells were enlarged and severely damaged. The chloroplasts showed great ultrastructural alterations and a reduced Chl content. Cd exposure negatively affected PSII, whose activity was almost completely lost after four days.
Responses of the Antarctic microalga Koliella antarctica (Trebouxiophyceae, Chlorophyta) to cadmium contamination.
LA ROCCA, NICOLETTA;ANDREOLI, CARLO;GIACOMETTI, GIORGIO;RASCIO, NICOLETTA;MORO, ISABELLA
2009
Abstract
Ultrastructural and physiological effects of exposure to 1 ppm and 5 ppm of cadmium (Cd) on cultured cells of Koliella antarctica, a green microalga from Antarctica, were investigated. The amount of Cd in the alga rose with the increase of the metal concentration in the growth medium and most Cd remained outside the cells, bound to the components of the cell walls. The increase of Cd in the microalga was concomitant with the decrease of other elements, mainly calcium (Ca). Exposure to 1 ppm Cd slowed culture growth by inhibiting cell division and also caused the development of some misshapen cells with chloroplast showing disordered thylakoids. However, this concentration did not substantially affect the chlorophyll (Chl) content or photosystem (PS) activity. At 5 ppm, Cd cell growth suddenly stopped and some cells lysed. After a week of Cd contamination, the cells were enlarged and severely damaged. The chloroplasts showed great ultrastructural alterations and a reduced Chl content. Cd exposure negatively affected PSII, whose activity was almost completely lost after four days.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.