Abstract A parallel algorithm based on the multidimensional minimization of the Rayleigh quotient is proposed to evaluate the leftmost eigenpairs of the generalized symmetric positive definite eigenproblem. The minimization is performed via a conjugate gradient- like procedure accelerated by a factorized approximate inverse preconditioner (FSAI) and by a number of block preconditioners. The resulting code obtains a high level of parallel efficiency and proves to be comparable with the PARPACK package on a set of large matrices arising from various discretizations of PDEs of elliptic/parabolic type.
Parallel preconditioned conjugate gradient optimization of the Rayleigh quotient for the solution of sparse eigenproblems
BERGAMASCHI, LUCA;MARTINEZ CALOMARDO, ANGELES;PINI, GIORGIO
2006
Abstract
Abstract A parallel algorithm based on the multidimensional minimization of the Rayleigh quotient is proposed to evaluate the leftmost eigenpairs of the generalized symmetric positive definite eigenproblem. The minimization is performed via a conjugate gradient- like procedure accelerated by a factorized approximate inverse preconditioner (FSAI) and by a number of block preconditioners. The resulting code obtains a high level of parallel efficiency and proves to be comparable with the PARPACK package on a set of large matrices arising from various discretizations of PDEs of elliptic/parabolic type.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.