New formulas for the asymptotic variance of the parameter estimates in subspace identi,cation, show that the accuracy of the parameter estimates depends on certain indices of ‘near collinearity’ of the state and future input subspaces of the system to be identi,ed. This complements the numerical conditioning analysis of subspace methods presented in the companion paper (On the ill-conditioning of subspace identi,cation with inputs, Automatica, doi:10.1016/j.automatica.2003.11.009).

Numerical conditioning and asymptotic variance of subspace estimates

CHIUSO, ALESSANDRO;PICCI, GIORGIO
2004

Abstract

New formulas for the asymptotic variance of the parameter estimates in subspace identi,cation, show that the accuracy of the parameter estimates depends on certain indices of ‘near collinearity’ of the state and future input subspaces of the system to be identi,ed. This complements the numerical conditioning analysis of subspace methods presented in the companion paper (On the ill-conditioning of subspace identi,cation with inputs, Automatica, doi:10.1016/j.automatica.2003.11.009).
2004
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2447259
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 16
  • OpenAlex ND
social impact