We consider the Dirichlet and the Neumann eigenvalue problem for the Laplace operator on a variable nonsmooth domain, and we prove that the elementary symmetric functions of the eigenvalues splitting from a given eigenvalue upon domain deformation have a critical point at a domain with the shape of a ball. Correspondingly, we formulate overdetermined boundary value problems of the type of the Schiffer conjecture.
Critical points of the symmetric functions of the eigenvalues of the Laplace operator and overdetermined problems
LAMBERTI, PIER DOMENICO;LANZA DE CRISTOFORIS, MASSIMO
2006
Abstract
We consider the Dirichlet and the Neumann eigenvalue problem for the Laplace operator on a variable nonsmooth domain, and we prove that the elementary symmetric functions of the eigenvalues splitting from a given eigenvalue upon domain deformation have a critical point at a domain with the shape of a ball. Correspondingly, we formulate overdetermined boundary value problems of the type of the Schiffer conjecture.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
LambertiLanza06.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Accesso gratuito
Dimensione
212.34 kB
Formato
Adobe PDF
|
212.34 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.