Hyperglycaemia is associated with oxidative stress. The inducible isoform of heme oxygenase (HO-1) is an effective system to counteract oxidative stress, yet it is unclear how hyperglycaemia affects HO-1. In this study, we explored: 1) the HO-1 protein content and HO activity in human umbilical vein endothelial cells (HUVECs) exposed to different glucose concentrations, and 2) the mechanisms which account for the high glucose-induced effects on HO-1. We evaluated HO-1 protein expression, HO activity, apoptosis and reactive oxygen species (ROS) in HUVECs treated for 48 h with 5.5, 10 and 20 mM glucose. A dose-dependent production of reactive oxygen species was observed. At 10 mM glucose, an increase of HO-1 protein expression and HO activity was observed, whereas at 20 mM, there was no change in protein content and activity relative to at 5.5 mM glucose. HO-1 protein expression in HUVECs exposed to 20 mM of glucose was increased in the presence of 20 U/ml superoxide dismutase (SOD). HO-1 gene silencing augments ROS production both at 5.5 and 10 mM glucose, leading to an increased apoptosis. We conclude that, in endothelial cells, the regulation of HO-1 by glucose is dependent upon levels of glucose itself. Lack of homeostatic HO-1 upregulation fails to protect from oxidative damage and results in a higher rate of apoptotic cell death.
Heme oxygenase-1 is an important modulator in limiting glucose-induced apoptosis in human umbilical vein endothelial cells
IORI, ELISABETTA;PAGNIN, ELISA;CALO', LORENZO;FADINI, GIAN PAOLO;AVOGARO, ANGELO
2008
Abstract
Hyperglycaemia is associated with oxidative stress. The inducible isoform of heme oxygenase (HO-1) is an effective system to counteract oxidative stress, yet it is unclear how hyperglycaemia affects HO-1. In this study, we explored: 1) the HO-1 protein content and HO activity in human umbilical vein endothelial cells (HUVECs) exposed to different glucose concentrations, and 2) the mechanisms which account for the high glucose-induced effects on HO-1. We evaluated HO-1 protein expression, HO activity, apoptosis and reactive oxygen species (ROS) in HUVECs treated for 48 h with 5.5, 10 and 20 mM glucose. A dose-dependent production of reactive oxygen species was observed. At 10 mM glucose, an increase of HO-1 protein expression and HO activity was observed, whereas at 20 mM, there was no change in protein content and activity relative to at 5.5 mM glucose. HO-1 protein expression in HUVECs exposed to 20 mM of glucose was increased in the presence of 20 U/ml superoxide dismutase (SOD). HO-1 gene silencing augments ROS production both at 5.5 and 10 mM glucose, leading to an increased apoptosis. We conclude that, in endothelial cells, the regulation of HO-1 by glucose is dependent upon levels of glucose itself. Lack of homeostatic HO-1 upregulation fails to protect from oxidative damage and results in a higher rate of apoptotic cell death.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.