Distributional theory for Quasi-Maximum Likelihood estimators in long memory conditional heteroskedastic models is not formally defined, even asymptotically. Because of that, this paper analyses the real size and power of the likelihood ratio and the Lagrange multiplier misspecification tests when periodic long memory GARCH models are involved. The performance of these tests is studied by means of Monte Carlo simulations with respect to the class of generalized long memory GARCH models. For this class of models, analytical derivatives are developed. An application to the USD/JPY exchange rate is also provided.

Misspecification tests for periodic long memory GARCH models

CAPORIN, MASSIMILIANO;LISI, FRANCESCO
2010

Abstract

Distributional theory for Quasi-Maximum Likelihood estimators in long memory conditional heteroskedastic models is not formally defined, even asymptotically. Because of that, this paper analyses the real size and power of the likelihood ratio and the Lagrange multiplier misspecification tests when periodic long memory GARCH models are involved. The performance of these tests is studied by means of Monte Carlo simulations with respect to the class of generalized long memory GARCH models. For this class of models, analytical derivatives are developed. An application to the USD/JPY exchange rate is also provided.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2446819
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact