Orexins A and B are hypothalamic peptides, that act via two subtypes of receptors, named OX1-R and OX2-R. Rat and human adrenal cortexes are provided with both OX1-R and OX2-R, and we have previously shown that orexin-A, but not orexin-B, enhances glucocorticoid secretion from dispersed adrenocortical cells. Since OX1-Rs preferentially bind orexin-A and OX2-Rs are non-selective for both orexins, the hypothesis has been advanced that the secretagogue effect of orexin-A is exclusively mediated by the OX1-R. Here, we aimed to verify this contention and to gain insight into the signaling mechanism(s) underlying the secretagogue effect of orexins using primary cultures of rat and human adrenocortical cells. Reverse transcription-polymerase chain reaction showed that cultured cells, as freshly dispersed cells, expressed both OX1-R and OX2-R mRNAs. Orexin-A, but not orexin-B, concentration-dependently increased corticosterone and cortisol secretion from cultured rat and human adrenocortical cells, respectively. The blockade of OX1-Rs by selective antibodies abrogated the secretagogue effect of orexin-A, while the immuno-blockade of OX2-Rs was ineffective. The glucocorticoid response of cultured cells to orexin-A was annulled by the adenylate cyclase and protein kinase (PK) A inhibitors SQ-22536 and H-89, and unaffected by the phospholipase C and PKC inhibitors U-73122 and calphostin-C. Orexin-A, but not orexin-B, enhanced cyclic-AMP production from cultured cells, and did not alter inositol-3-phosphate release. Collectively, our present results allow us to conclude that orexins stimulate glucocorticoid secretion from rat and human adrenocortical cells, exclusively acting through OX1-Rs coupled to the adenylate cyclase/PKA-dependent signaling cascade
Orexins stimulate glucocorticoid secretion from cultured rat and human adrenocortical cells, exclusively acting via the OX1 receptor
ALBERTIN, GIOVANNA;TORTORELLA, CINZIA;NUSDORFER, GASTONE
2005
Abstract
Orexins A and B are hypothalamic peptides, that act via two subtypes of receptors, named OX1-R and OX2-R. Rat and human adrenal cortexes are provided with both OX1-R and OX2-R, and we have previously shown that orexin-A, but not orexin-B, enhances glucocorticoid secretion from dispersed adrenocortical cells. Since OX1-Rs preferentially bind orexin-A and OX2-Rs are non-selective for both orexins, the hypothesis has been advanced that the secretagogue effect of orexin-A is exclusively mediated by the OX1-R. Here, we aimed to verify this contention and to gain insight into the signaling mechanism(s) underlying the secretagogue effect of orexins using primary cultures of rat and human adrenocortical cells. Reverse transcription-polymerase chain reaction showed that cultured cells, as freshly dispersed cells, expressed both OX1-R and OX2-R mRNAs. Orexin-A, but not orexin-B, concentration-dependently increased corticosterone and cortisol secretion from cultured rat and human adrenocortical cells, respectively. The blockade of OX1-Rs by selective antibodies abrogated the secretagogue effect of orexin-A, while the immuno-blockade of OX2-Rs was ineffective. The glucocorticoid response of cultured cells to orexin-A was annulled by the adenylate cyclase and protein kinase (PK) A inhibitors SQ-22536 and H-89, and unaffected by the phospholipase C and PKC inhibitors U-73122 and calphostin-C. Orexin-A, but not orexin-B, enhanced cyclic-AMP production from cultured cells, and did not alter inositol-3-phosphate release. Collectively, our present results allow us to conclude that orexins stimulate glucocorticoid secretion from rat and human adrenocortical cells, exclusively acting through OX1-Rs coupled to the adenylate cyclase/PKA-dependent signaling cascadePubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.