The lipopeptaibol trichogin GA IV is a 10 amino acid-long residue and α-aminoisobutyric acid-rich antibiotic peptide of fungal origin. TOAC (2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) spin-labeled analogs of this membrane active peptide were investigated in hydrated bilayers of dipalmitoylphosphatidylcholine by electron spin echo envelope modulation (ESEEM) spectroscopy and pulsed electron-electron double resonance (PELDOR). Since, the ESEEM of the spin label appears to be strongly dependent on the presence of water molecules penetrated into the membrane, this phenomenon was used to study the location of this peptide in the membrane. This was achieved by comparing the ESEEM spectra for peptides labeled at different positions along the amino acid sequence with spectra known for lipids with spin labels at different positions along the hydrocarbon chain. To increase the ESEEM amplitude and to distinguish the hydrogen nuclei of water from lipid protons, membranes were hydrated with deuterated water. The PELDOR spectroscopy technique was chosen to study peptide aggregation and to determine the mutual distance distribution of the spin-labeled peptides in the membrane. The location of the peptide in the membrane and its aggregation state were found to be dependent on the peptide concentration. At a low peptide/lipid molar ratio (less than 1:100) the nonaggregated peptide chain of the trichogin molecules lie parallel to the membrane surface, with TOAC at the 4th residue located near the 9th–11th carbon positions of the sn-2 lipid chain. Increasing this ratio up to 1:20 leads to a change in peptide orientation, with the N-terminus of the peptide buried deeper into membrane. Under these conditions peptide aggregates are formed with a mean aggregate number of about N = 2. The aggregates are further characterized by a broad range of intermolecular distances (1.5–4 nm) between the labels at the N-terminal residues. The major population exhibits a distance of ∼2.5 nm, which is of the same order as the length of the helical peptide. We suggest that the constituting monomers of the dimer are antiparallel oriented.
Location and aggregation of the spin-labeled peptide trichogin GA IV in a phospholipid membrane as revealed by pulsed EPR
PEGGION, CRISTINA;FORMAGGIO, FERNANDO;TONIOLO, CLAUDIO;
2006
Abstract
The lipopeptaibol trichogin GA IV is a 10 amino acid-long residue and α-aminoisobutyric acid-rich antibiotic peptide of fungal origin. TOAC (2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) spin-labeled analogs of this membrane active peptide were investigated in hydrated bilayers of dipalmitoylphosphatidylcholine by electron spin echo envelope modulation (ESEEM) spectroscopy and pulsed electron-electron double resonance (PELDOR). Since, the ESEEM of the spin label appears to be strongly dependent on the presence of water molecules penetrated into the membrane, this phenomenon was used to study the location of this peptide in the membrane. This was achieved by comparing the ESEEM spectra for peptides labeled at different positions along the amino acid sequence with spectra known for lipids with spin labels at different positions along the hydrocarbon chain. To increase the ESEEM amplitude and to distinguish the hydrogen nuclei of water from lipid protons, membranes were hydrated with deuterated water. The PELDOR spectroscopy technique was chosen to study peptide aggregation and to determine the mutual distance distribution of the spin-labeled peptides in the membrane. The location of the peptide in the membrane and its aggregation state were found to be dependent on the peptide concentration. At a low peptide/lipid molar ratio (less than 1:100) the nonaggregated peptide chain of the trichogin molecules lie parallel to the membrane surface, with TOAC at the 4th residue located near the 9th–11th carbon positions of the sn-2 lipid chain. Increasing this ratio up to 1:20 leads to a change in peptide orientation, with the N-terminus of the peptide buried deeper into membrane. Under these conditions peptide aggregates are formed with a mean aggregate number of about N = 2. The aggregates are further characterized by a broad range of intermolecular distances (1.5–4 nm) between the labels at the N-terminal residues. The major population exhibits a distance of ∼2.5 nm, which is of the same order as the length of the helical peptide. We suggest that the constituting monomers of the dimer are antiparallel oriented.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.