Neither anatomical change nor physiological abnormalities have been observed in the cambia of older trees. However, different sensitivity and period of significant responses to climate suggest the existence of some age-related change in the patterns of cambial activity and/or wood cell formation. Here, weekly cambial activity and timing and duration of xylem cell enlargement and wall thickening were compared in adult (50-80 yr) and old (200-350 yr) trees of Larix decidua, Pinus cembra and Picea abies at the Alpine timberline during 2004 and 2005. Timings and durations of xylogenesis differed between adult and old trees, with 2-3 wk shorter cambial activity found in the latter. The delayed onset of cambium division and lower cell production in old trees, with respect to adult trees, led to reductions of 15-20% in the overall duration of xylem differentiation. These results demonstrate that cambial dynamics change during the tree lifespan and that the time window of tree-ring production shortens with age. Variations in the period of xylem growth may be the cause of age-dependent responses to climate. The observed shorter xylogenesis in older plants at the Alpine timberline could be related to a size effect and not just to age per se.

Age-dependent xylogenesis in timberline conifers

ANFODILLO, TOMMASO;CARRER, MARCO
2008

Abstract

Neither anatomical change nor physiological abnormalities have been observed in the cambia of older trees. However, different sensitivity and period of significant responses to climate suggest the existence of some age-related change in the patterns of cambial activity and/or wood cell formation. Here, weekly cambial activity and timing and duration of xylem cell enlargement and wall thickening were compared in adult (50-80 yr) and old (200-350 yr) trees of Larix decidua, Pinus cembra and Picea abies at the Alpine timberline during 2004 and 2005. Timings and durations of xylogenesis differed between adult and old trees, with 2-3 wk shorter cambial activity found in the latter. The delayed onset of cambium division and lower cell production in old trees, with respect to adult trees, led to reductions of 15-20% in the overall duration of xylem differentiation. These results demonstrate that cambial dynamics change during the tree lifespan and that the time window of tree-ring production shortens with age. Variations in the period of xylem growth may be the cause of age-dependent responses to climate. The observed shorter xylogenesis in older plants at the Alpine timberline could be related to a size effect and not just to age per se.
2008
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2445742
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 210
  • OpenAlex ND
social impact