Background: During the interaction between rhizobia and leguminous plants the two partners engage in a molecular conversation that leads to reciprocal recognition and ensures the beginning of a successful symbiotic integration. In host plants, intracellular Ca2+ changes are an integral part of the signalling mechanism. In rhizobia it is not yet known whether Ca2+ can act as a transducer of symbiotic signals. Results: A plasmid encoding the bioluminescent Ca2+ probe aequorin was introduced into Mesorhizobium loti USDA 3147T strain to investigate whether a Ca2+ response is activated in rhizobia upon perception of plant root exudates. We find that M. loti cells respond to environmental and symbiotic cues through transient elevations in intracellular free Ca2+ concentration. Only root exudates from the homologous host Lotus japonicus induce Ca2+ signalling and downstream activation of nodulation genes. The extracellular Ca2+ chelator EGTA inhibits both transient intracellular Ca2+ increase and inducible nod gene expression, while not affecting the expression of other genes, either constitutively expressed or inducible. Conclusion: These findings indicate a newly described early event in the molecular dialogue between plants and rhizobia and highlight the use of aequorin-expressing bacterial strains as a promising novel approach for research in legume symbiosis.

Evidence for calcium-mediated perception of plant symbiotic signals in aequorin-expressing Mesorhizobium loti

MOSCATIELLO, ROBERTO;ALBERGHINI, SARA;SQUARTINI, ANDREA;MARIANI, PAOLINA;NAVAZIO, LORELLA
2009

Abstract

Background: During the interaction between rhizobia and leguminous plants the two partners engage in a molecular conversation that leads to reciprocal recognition and ensures the beginning of a successful symbiotic integration. In host plants, intracellular Ca2+ changes are an integral part of the signalling mechanism. In rhizobia it is not yet known whether Ca2+ can act as a transducer of symbiotic signals. Results: A plasmid encoding the bioluminescent Ca2+ probe aequorin was introduced into Mesorhizobium loti USDA 3147T strain to investigate whether a Ca2+ response is activated in rhizobia upon perception of plant root exudates. We find that M. loti cells respond to environmental and symbiotic cues through transient elevations in intracellular free Ca2+ concentration. Only root exudates from the homologous host Lotus japonicus induce Ca2+ signalling and downstream activation of nodulation genes. The extracellular Ca2+ chelator EGTA inhibits both transient intracellular Ca2+ increase and inducible nod gene expression, while not affecting the expression of other genes, either constitutively expressed or inducible. Conclusion: These findings indicate a newly described early event in the molecular dialogue between plants and rhizobia and highlight the use of aequorin-expressing bacterial strains as a promising novel approach for research in legume symbiosis.
2009
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2445556
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
  • OpenAlex ND
social impact