A molecular simplification approach of previously reported 2-arylpyrazolo[3,4-c]quinolin-4-ones was applied to design 2-arylpyrazolo[4,3-d]pyrimidin-7-one derivatives as new human A(3) adenosine receptor antagonists. Substituents with different lipophilicity and steric hindrance were introduced at the 5-position of the bicyclic scaffold (R(5) = H, Me, Et, Ph, CH(2)Ph) and on the 2-phenyl ring (OMe, Me). Most of the synthesized derivatives were highly potent hA(3) adenosine receptor antagonists, the best being the 2-(4-methoxyphenyl)pyrazolo[4,3-d]pyrimidin-7-one (K(i) = 1.2 nM). The new compounds were also highly selective, being completely devoid of affinity toward hA(1), hA(2A), and hA(2B) adenosine receptors. On the basis of the recently published human A(2A) receptor crystallographic information, we propose a novel receptor-driven hypothesis to explain both A(3) AR affinity and A(3) versus A(2A) selectivity profiles of these new antagonists.
2-Phenylpyrazolo[4,3-d]pyrimidin-7-one as a New Scaffold To Obtain Potent and Selective Human A(3) Adenosine Receptor Antagonists: New Insights into the Receptor-Antagonist Recognition
PAOLETTA, SILVIA;MORIZZO, ERIKA;MORO, STEFANO
2009
Abstract
A molecular simplification approach of previously reported 2-arylpyrazolo[3,4-c]quinolin-4-ones was applied to design 2-arylpyrazolo[4,3-d]pyrimidin-7-one derivatives as new human A(3) adenosine receptor antagonists. Substituents with different lipophilicity and steric hindrance were introduced at the 5-position of the bicyclic scaffold (R(5) = H, Me, Et, Ph, CH(2)Ph) and on the 2-phenyl ring (OMe, Me). Most of the synthesized derivatives were highly potent hA(3) adenosine receptor antagonists, the best being the 2-(4-methoxyphenyl)pyrazolo[4,3-d]pyrimidin-7-one (K(i) = 1.2 nM). The new compounds were also highly selective, being completely devoid of affinity toward hA(1), hA(2A), and hA(2B) adenosine receptors. On the basis of the recently published human A(2A) receptor crystallographic information, we propose a novel receptor-driven hypothesis to explain both A(3) AR affinity and A(3) versus A(2A) selectivity profiles of these new antagonists.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.