Surface polishing is a typical example of a machining process based on mixed chemical-mechanical phenomena, as pointed out in the recent literature on the polishing process (CPM - Chemical Mechanical Polishing). In this work, a model is proposed for the assessment of surface roughness evolution in the polishing process of glass moulds, used in the manufacturing of ophthalmic lenses, in order to identify the influence of the operating parameters on the material removal rate (MRR). In this model the evolution of surface roughness during the polishing process is based on Reye hypothesis. According to such hypothesis, the removed material in a specific time interval is proportional to the friction work: the removed material per unit area can be computed by adequately integrating the bearing ratio curve (Abbott-Firestone) of the surface; the friction work per unit area is proportional, according to the dynamic friction coefficient, to the integral of the product of pressure and velocity in the time interval. A similar result can be also obtained adopting other wear models, e.g. the Preston or Archard approaches. The model validation was performed on ground glass flat samples polished with increasing values of MRR. Pressure and velocity distributions on the sample surface were established according to the polishing machine operating parameters by means of the Hertz theory; the surface roughness of the sample was mapped using an atomic force microscope (AFM). The developed model shows a satisfactory estimate of surface roughness evolution during the polishing process and confirms the experimental results found in literature.

A new model for surface roughness evolution in the Chemical Mechanical Polishing (CMP) process

SAVIO, GIANPAOLO;MENEGHELLO, ROBERTO;CONCHERI, GIANMARIA
2007

Abstract

Surface polishing is a typical example of a machining process based on mixed chemical-mechanical phenomena, as pointed out in the recent literature on the polishing process (CPM - Chemical Mechanical Polishing). In this work, a model is proposed for the assessment of surface roughness evolution in the polishing process of glass moulds, used in the manufacturing of ophthalmic lenses, in order to identify the influence of the operating parameters on the material removal rate (MRR). In this model the evolution of surface roughness during the polishing process is based on Reye hypothesis. According to such hypothesis, the removed material in a specific time interval is proportional to the friction work: the removed material per unit area can be computed by adequately integrating the bearing ratio curve (Abbott-Firestone) of the surface; the friction work per unit area is proportional, according to the dynamic friction coefficient, to the integral of the product of pressure and velocity in the time interval. A similar result can be also obtained adopting other wear models, e.g. the Preston or Archard approaches. The model validation was performed on ground glass flat samples polished with increasing values of MRR. Pressure and velocity distributions on the sample surface were established according to the polishing machine operating parameters by means of the Hertz theory; the surface roughness of the sample was mapped using an atomic force microscope (AFM). The developed model shows a satisfactory estimate of surface roughness evolution during the polishing process and confirms the experimental results found in literature.
2007
Laser Metrology and Machine Performance VIII
8th International Conference and Exhibition on Laser Metrology, Machine Tool, CMM and Robotic Performance, LAMDAMAP 2007
9780955308239
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2443211
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact