Novel tetracyclic allopsoralen derivatives characterized by the condensation of a fourth cyclohexenylic (5−7) or benzenic (8−10) ring at the furan side and a methoxy (5 and 8), a hydroxy (6 and 9), or a dimethylaminopropoxy (7 and 10) side chain in the 10 position of the chromophore were prepared. Compounds 7 and 10 showed a strong photoantiproliferative activity, up to 3 orders of magnitude higher than that of the photochemotherapeutic drug 8-methoxypsoralen (8-MOP). The investigation into the mechanism of action demonstrated for 10 the capacity to intercalate between DNA base pairs in the ground state, to give rise to a covalent photoaddition upon UVA irradiation, and to inhibit polymerase chain reaction (PCR) in a sequence-specific manner. Conversely, compound 7 showed a limited capacity to form an intercalative complex and the lack of ability to photoadd to the macromolecule, thus revealing a novel and unusual behavior for an allopsoralen derivative.

New furan side tetracyclic allopsoralen derivatives: Synthesis and photobiological evaluation

DALLA VIA, LISA;MAMMI, STEFANO;GIA, ORNELLA MARIA
2006

Abstract

Novel tetracyclic allopsoralen derivatives characterized by the condensation of a fourth cyclohexenylic (5−7) or benzenic (8−10) ring at the furan side and a methoxy (5 and 8), a hydroxy (6 and 9), or a dimethylaminopropoxy (7 and 10) side chain in the 10 position of the chromophore were prepared. Compounds 7 and 10 showed a strong photoantiproliferative activity, up to 3 orders of magnitude higher than that of the photochemotherapeutic drug 8-methoxypsoralen (8-MOP). The investigation into the mechanism of action demonstrated for 10 the capacity to intercalate between DNA base pairs in the ground state, to give rise to a covalent photoaddition upon UVA irradiation, and to inhibit polymerase chain reaction (PCR) in a sequence-specific manner. Conversely, compound 7 showed a limited capacity to form an intercalative complex and the lack of ability to photoadd to the macromolecule, thus revealing a novel and unusual behavior for an allopsoralen derivative.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2442948
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 17
  • OpenAlex ND
social impact