Snake myotoxins have a great impact on human health worldwide. Most of them adopt a phospholipase A2 fold and occur in two forms which often co-exist in the same venom: the Asp49 toxins hydrolyse phospholipids, whilst Lys49 toxins are enzymatically inactive. To gain insights into their mechanism of action, muscle cells were exposed to Bothrops myotoxins, and cytosolic Ca(2+) and cytotoxicity were measured. In both myoblasts and myotubes, the myotoxins induced a rapid and transient rise in cytosolic [Ca(2+)], derived from intracellular stores, followed, only in myotubes, by a large Ca(2+) influx and extensive cell death. Myoblast viability was unaffected. Notably, in myotubes Asp49 and Lys49 myotoxins acted synergistically to increase the plasma membrane Ca(2+) permeability, inducing cell death. Therefore, these myotoxins may bind to acceptor(s) coupled to intracellular Ca(2+) mobilization in both myoblasts and myotubes. However, in myotubes only, the toxins alter plasma membrane permeability, leading to death.

Calcium imaging ofmuscle cells treated with snake myotoxins reveals toxin synergism and presence ofacceptors.

PIZZO, PAOLA;ROSSETTO, ORNELLA;POZZAN, TULLIO;MONTECUCCO, CESARE
2009

Abstract

Snake myotoxins have a great impact on human health worldwide. Most of them adopt a phospholipase A2 fold and occur in two forms which often co-exist in the same venom: the Asp49 toxins hydrolyse phospholipids, whilst Lys49 toxins are enzymatically inactive. To gain insights into their mechanism of action, muscle cells were exposed to Bothrops myotoxins, and cytosolic Ca(2+) and cytotoxicity were measured. In both myoblasts and myotubes, the myotoxins induced a rapid and transient rise in cytosolic [Ca(2+)], derived from intracellular stores, followed, only in myotubes, by a large Ca(2+) influx and extensive cell death. Myoblast viability was unaffected. Notably, in myotubes Asp49 and Lys49 myotoxins acted synergistically to increase the plasma membrane Ca(2+) permeability, inducing cell death. Therefore, these myotoxins may bind to acceptor(s) coupled to intracellular Ca(2+) mobilization in both myoblasts and myotubes. However, in myotubes only, the toxins alter plasma membrane permeability, leading to death.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2442165
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 62
  • OpenAlex ND
social impact