Surface decoration of gold nanoparticles with thermoresponsive polymers endows a temperature tunable colloidal system switchable for enhanced intracellular up-take. Gold nanoparticles (AuNP, 18 ± 11 nm-diameter) produced by laser ablation synthesis in liquid solution were surface coated with thermoresponsive thiol terminated poly-N-isopropylacrylamide-co-acrylamide co-polymer possessing a lower critical solution temperature (LCST) at 37 °C. Under selected conditions about 3800 polymer chains were conjugated per particle. The polymer coated nanoparticles were found to display thermosensitive properties, as in solution they exhibited reversible aggregation/deaggregation above and below the LCST, respectively. Cell culture studies showed that the polymer decorated AuNP were located into human breast adenocarcinoma MCF7 cells treated at 40 °C (12000 AuNP/cell) with more than 80-fold greater up-take compared to cells treated at 34 °C with the same particles (140 AuN/cell). This difference is attributable to a ‘switching’ of the polymer coating to a globule state at 37 °C and an increased hydrophobicity of the particles with a simultaneous loss of the ‘stealth’ properties of the polymer coating. By contrast, cell up-take of uncoated AuNP (about 6000 AuNP/cell) did not depend on the incubation temperature. These data show that good control of the AuNP cell up-take can be obtained with the new polymer-gold nanoconjugates, and suggest that these systems might find use for targeting cells in vitro by a small temperature change or in vivo in body sites, such as inflamed or tumour tissues, where a temperature variation is already present.
Cell up-take control of gold nanoparticles functionalized with a thermoresponsive polymer
SALMASO, STEFANO;CALICETI, PAOLO;AMENDOLA, VINCENZO;MENEGHETTI, MORENO;
2009
Abstract
Surface decoration of gold nanoparticles with thermoresponsive polymers endows a temperature tunable colloidal system switchable for enhanced intracellular up-take. Gold nanoparticles (AuNP, 18 ± 11 nm-diameter) produced by laser ablation synthesis in liquid solution were surface coated with thermoresponsive thiol terminated poly-N-isopropylacrylamide-co-acrylamide co-polymer possessing a lower critical solution temperature (LCST) at 37 °C. Under selected conditions about 3800 polymer chains were conjugated per particle. The polymer coated nanoparticles were found to display thermosensitive properties, as in solution they exhibited reversible aggregation/deaggregation above and below the LCST, respectively. Cell culture studies showed that the polymer decorated AuNP were located into human breast adenocarcinoma MCF7 cells treated at 40 °C (12000 AuNP/cell) with more than 80-fold greater up-take compared to cells treated at 34 °C with the same particles (140 AuN/cell). This difference is attributable to a ‘switching’ of the polymer coating to a globule state at 37 °C and an increased hydrophobicity of the particles with a simultaneous loss of the ‘stealth’ properties of the polymer coating. By contrast, cell up-take of uncoated AuNP (about 6000 AuNP/cell) did not depend on the incubation temperature. These data show that good control of the AuNP cell up-take can be obtained with the new polymer-gold nanoconjugates, and suggest that these systems might find use for targeting cells in vitro by a small temperature change or in vivo in body sites, such as inflamed or tumour tissues, where a temperature variation is already present.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.