We developed a simple methodology for a direct control of the height of carboxylated single-walled carbon nanotube (SWNT) forests. We found that the important step is a good control of the oxidation temperature of the nanotubes. SWNTs oxidation at different temperature was followed by Raman and X-ray photoelectron spectroscopies. Atomic force microscopy images showed that micropatterned self-assembled monolayers forests have average height from 20 to 80 nm using SWNTs oxidized in the temperature ranging from 323 to 303 K, respectively.

Nanotubes oxidation temperature controls the height of single-walled carbon nanotube forests on gold micropatterned thin layers

LAMBERTI, FRANCESCO;AGNOLI, STEFANO;MENEGHETTI, MORENO;ELVASSORE, NICOLA
2010

Abstract

We developed a simple methodology for a direct control of the height of carboxylated single-walled carbon nanotube (SWNT) forests. We found that the important step is a good control of the oxidation temperature of the nanotubes. SWNTs oxidation at different temperature was followed by Raman and X-ray photoelectron spectroscopies. Atomic force microscopy images showed that micropatterned self-assembled monolayers forests have average height from 20 to 80 nm using SWNTs oxidized in the temperature ranging from 323 to 303 K, respectively.
2010
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2441326
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact