In the present paper we combined ion implantation and nanosphere lithography to regularly dope, by a mask-assisted process, a SiO2 substrate with rare earth ions (Er) by ion implantation and to fabricate by sputtering a plasmonic 2D periodic array of Au nanostructures on the silica surface spatially coupled to the implanted Er3+ ions. The aim of this work is to study how Er3+ emission at 1.5 lm can be affected by the interaction with a plasmonic nanostructure. In particular we have found a variation of the radiative lifetime of the Er3+ emission and a change from single exponential to bi-exponential of the luminescence intensity decay.
Nanopatterning of silica with mask-assisted ion implantation
PEROTTO, GIOVANNI;BELLO, VALENTINA;CESCA, TIZIANA;MATTEI, GIOVANNI;MAZZOLDI, PAOLO;PELLEGRINI, GIOVANNI;SCIAN, CARLO
2010
Abstract
In the present paper we combined ion implantation and nanosphere lithography to regularly dope, by a mask-assisted process, a SiO2 substrate with rare earth ions (Er) by ion implantation and to fabricate by sputtering a plasmonic 2D periodic array of Au nanostructures on the silica surface spatially coupled to the implanted Er3+ ions. The aim of this work is to study how Er3+ emission at 1.5 lm can be affected by the interaction with a plasmonic nanostructure. In particular we have found a variation of the radiative lifetime of the Er3+ emission and a change from single exponential to bi-exponential of the luminescence intensity decay.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.