The concept of molecular simplification as a drug design strategy to shorten synthetic routes, while keeping or enhancing the biological activity of the lead drug, has been applied to design new classes of human A3 adenosine receptor (AR) antagonists. Over the past decade, we have focused a part of our research on the study of AR antagonists belonging to strictly correlated classes of tricyclic compounds. One of these classes is represented by the 2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives, either 4-amino or 4-oxo-substituted, which were intensively investigated by evaluating the effect of different substituents on the 2-phenyl ring and on the 4-amino group. Using an in silico molecular simplification approach, a new series of easily synthesizable 2-amino/2-oxoquinazoline-4-carboxamido derivatives have been discovered, presenting high affinity and selectivity against human A3 AR.

Scouting human A(3) adenosine receptor antagonist binding mode using a molecular simplification approach: From triazoloquinoxaline to a pyrimidine skeleton as a key study

MORIZZO, ERIKA;MORO, STEFANO
2007

Abstract

The concept of molecular simplification as a drug design strategy to shorten synthetic routes, while keeping or enhancing the biological activity of the lead drug, has been applied to design new classes of human A3 adenosine receptor (AR) antagonists. Over the past decade, we have focused a part of our research on the study of AR antagonists belonging to strictly correlated classes of tricyclic compounds. One of these classes is represented by the 2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives, either 4-amino or 4-oxo-substituted, which were intensively investigated by evaluating the effect of different substituents on the 2-phenyl ring and on the 4-amino group. Using an in silico molecular simplification approach, a new series of easily synthesizable 2-amino/2-oxoquinazoline-4-carboxamido derivatives have been discovered, presenting high affinity and selectivity against human A3 AR.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2441050
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 32
social impact