The CDKN2A locus encodes for two distinct tumor suppressor proteins, p16INK4A and p14ARF, involved in cell cycle regulation. CDKN2A germline mutations have been associated with familial predisposition to melanoma and other tumor types. Besides bona-fide pathogenic mutations, many sequence variants have been identified, but their effect is not well known. We detected the p.Gly23Asp missense mutation in one of the two tested melanoma patients of a family with three melanoma cases. Even though the mutated amino acid is located in a conserved domain that specifically binds to and blocks the function of CDK4/6, its lack of segregation with disease suggested a series of functional assays to discriminate between a pathogenic variant and a neutral polymorphism. The effect of this mutation has been investigated exploiting four p16INK4A properties: its ability (i) to bind CDK4, (ii) to inhibit pRb phosphorylation, (iii) to evenly localize in the cell, and (iv) to cause cell cycle arrest. The mutant protein properties were evaluated transfecting three different cell lines (U2-OS and NM-39, both p16-null, and SaOS 2, p53 and pRb-null) with plasmids expressing either p16wt, p1623Asp, or the p1632Pro pathogenic variant. We found that p1623Asp was less efficient than p16wt in CDK4 binding, in inhibiting pRb phosphorylation, in inducing G1 cell cycle arrest; moreover, its pattern of distribution throughout the cell was suggestive of protein aggregation, thus assessing a pathogenic role for p1623Asp in familial melanoma.
Functional impairment of p16(INK4A) due to CDKN2A p.Gly23Asp missense mutation.
ALAIBAC, MAURO SALVATORE ALESSANDRO;D'ANDREA, EMMA
2009
Abstract
The CDKN2A locus encodes for two distinct tumor suppressor proteins, p16INK4A and p14ARF, involved in cell cycle regulation. CDKN2A germline mutations have been associated with familial predisposition to melanoma and other tumor types. Besides bona-fide pathogenic mutations, many sequence variants have been identified, but their effect is not well known. We detected the p.Gly23Asp missense mutation in one of the two tested melanoma patients of a family with three melanoma cases. Even though the mutated amino acid is located in a conserved domain that specifically binds to and blocks the function of CDK4/6, its lack of segregation with disease suggested a series of functional assays to discriminate between a pathogenic variant and a neutral polymorphism. The effect of this mutation has been investigated exploiting four p16INK4A properties: its ability (i) to bind CDK4, (ii) to inhibit pRb phosphorylation, (iii) to evenly localize in the cell, and (iv) to cause cell cycle arrest. The mutant protein properties were evaluated transfecting three different cell lines (U2-OS and NM-39, both p16-null, and SaOS 2, p53 and pRb-null) with plasmids expressing either p16wt, p1623Asp, or the p1632Pro pathogenic variant. We found that p1623Asp was less efficient than p16wt in CDK4 binding, in inhibiting pRb phosphorylation, in inducing G1 cell cycle arrest; moreover, its pattern of distribution throughout the cell was suggestive of protein aggregation, thus assessing a pathogenic role for p1623Asp in familial melanoma.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.