For dynamical systems defined by vector fields over a compact invariant set, we introduce a new class of approximated first integrals based on finite time averages and satisfying an explicit first order partial differential equation. These approximated first integrals can be used as finite time indicators of the dynamics. On the one hand, they provide the same results on applications than other popular indicators; on the other hand, their PDE based definition — that we show robust under suitable perturbations — allows one to study them using the traditional tools of PDE environment. In particular, we formulate this approximating device in the Lyapunov exponents framework and we compare the operative use of them to the common use of the Fast Lyapunov Indicators to detect the phase space structure of quasi-integrable systems.
A PDE approach to finite time indicators in Ergodic Theory
BERNARDI, OLGA;CARDIN, FRANCO;GUZZO, MASSIMILIANO;ZANELLI, LORENZO
2009
Abstract
For dynamical systems defined by vector fields over a compact invariant set, we introduce a new class of approximated first integrals based on finite time averages and satisfying an explicit first order partial differential equation. These approximated first integrals can be used as finite time indicators of the dynamics. On the one hand, they provide the same results on applications than other popular indicators; on the other hand, their PDE based definition — that we show robust under suitable perturbations — allows one to study them using the traditional tools of PDE environment. In particular, we formulate this approximating device in the Lyapunov exponents framework and we compare the operative use of them to the common use of the Fast Lyapunov Indicators to detect the phase space structure of quasi-integrable systems.File | Dimensione | Formato | |
---|---|---|---|
bernardi-cardin-guzzo-zanelli.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
3.45 MB
Formato
Adobe PDF
|
3.45 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.