The preparation and characterization of a self-assembled material showing a high nonlinear response and good photostability to ultrashort laser pulses is presented. The material is built by alternate deposition of tetrakis(4-sulfonatophenyl) porphyrin diacid (H4TPPS2-) and poly(diallyldimethylammonium chloride) (PDDA) forming electrostatically self-assembled multilayers (ESAMs). UV-visible absorption and emission experiments show that in this matrix H4TPPS2- is present mainly in its J-aggregated form. Furthermore, linear dichroism experiments on a 3 bilayer film show a preferential alignment of the porphyrin aggregate with the J-band transition dipole moment parallel to the film surface. The two photon absorption (TPA) properties of these films are investigated with the Z-scan technique at 806 nm, employing 130 fs pulses. The samples exhibit strong nonlinearities with a very large two-photon absorption coefficient beta(TPA) of 50 cm GW(-1). The origin of this large response is investigated. It has been already demonstrated that aggregation enhances the molecular TPA cross section of H4TPPS2- from 30 to 1000 GM in water solution thanks to cooperative effects. In a 20 bilayer film a further increase by a factor of 1.7 is observed and explained in terms of preferential alignment of J-aggregates in the multilayers
Large third-order nonlinear optical response of porphyrin J-aggregates oriented in self-assembled thin films
COLLINI, ELISABETTA;FERRANTE, CAMILLA;BOZIO, RENATO;
2006
Abstract
The preparation and characterization of a self-assembled material showing a high nonlinear response and good photostability to ultrashort laser pulses is presented. The material is built by alternate deposition of tetrakis(4-sulfonatophenyl) porphyrin diacid (H4TPPS2-) and poly(diallyldimethylammonium chloride) (PDDA) forming electrostatically self-assembled multilayers (ESAMs). UV-visible absorption and emission experiments show that in this matrix H4TPPS2- is present mainly in its J-aggregated form. Furthermore, linear dichroism experiments on a 3 bilayer film show a preferential alignment of the porphyrin aggregate with the J-band transition dipole moment parallel to the film surface. The two photon absorption (TPA) properties of these films are investigated with the Z-scan technique at 806 nm, employing 130 fs pulses. The samples exhibit strong nonlinearities with a very large two-photon absorption coefficient beta(TPA) of 50 cm GW(-1). The origin of this large response is investigated. It has been already demonstrated that aggregation enhances the molecular TPA cross section of H4TPPS2- from 30 to 1000 GM in water solution thanks to cooperative effects. In a 20 bilayer film a further increase by a factor of 1.7 is observed and explained in terms of preferential alignment of J-aggregates in the multilayersPubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.