The class of fractionally integrated generalised autoregressive conditional heteroskedastic (FIGARCH) models is extended for modelling the periodic long-range dependence typically shown by volatility of most intra-daily financial returns. The proposed class of models introduces generalised periodic long-memory filters, based on Gegenbauer polynomials, into the equation describing the time-varying volatility of standard GARCH models. A fitting procedure is illustrated and its performance is evaluated by means of Monte Carlo simulations. The effectiveness of these models in describing periodic long-memory volatility patterns is shown through an empirical application to the Euro–Dollar intra-daily exchange rate.
Generalised long-memory GARCH models for intra-daily volatility
BORDIGNON, SILVANO;CAPORIN, MASSIMILIANO;LISI, FRANCESCO
2007
Abstract
The class of fractionally integrated generalised autoregressive conditional heteroskedastic (FIGARCH) models is extended for modelling the periodic long-range dependence typically shown by volatility of most intra-daily financial returns. The proposed class of models introduces generalised periodic long-memory filters, based on Gegenbauer polynomials, into the equation describing the time-varying volatility of standard GARCH models. A fitting procedure is illustrated and its performance is evaluated by means of Monte Carlo simulations. The effectiveness of these models in describing periodic long-memory volatility patterns is shown through an empirical application to the Euro–Dollar intra-daily exchange rate.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.