The permeability transition pore (PTP) is an inner mitochondrial membrane channel that has been thoroughly characterized functionally, yet remains an elusive molecular entity. The best characterized PTP-regulatory component, cyclophilin (CyP) D, is a matrix protein that favors pore opening. CyP inhibitors, CyP-D null animals, and in situ PTP readouts have established the role of PTP as an effector mechanism of cell death, and the growing definition of PTP signalling mechanisms. This review briefly covers the functional features of the PTP and the role played by its dysregulation in disease pathogenesis. Recent progress on PTP modulation by kinase/phosphatase signal transduction is discussed, with specific emphasis on hexokinase and on the Akt-ERK-GSK3 axis, which might modulate the PTP through CyP-D phosphorylation.
Signal transduction to the permeability transition pore
RASOLA, ANDREA;SCIACOVELLI, MARCO;PANTIC, BORIS;BERNARDI, PAOLO
2010
Abstract
The permeability transition pore (PTP) is an inner mitochondrial membrane channel that has been thoroughly characterized functionally, yet remains an elusive molecular entity. The best characterized PTP-regulatory component, cyclophilin (CyP) D, is a matrix protein that favors pore opening. CyP inhibitors, CyP-D null animals, and in situ PTP readouts have established the role of PTP as an effector mechanism of cell death, and the growing definition of PTP signalling mechanisms. This review briefly covers the functional features of the PTP and the role played by its dysregulation in disease pathogenesis. Recent progress on PTP modulation by kinase/phosphatase signal transduction is discussed, with specific emphasis on hexokinase and on the Akt-ERK-GSK3 axis, which might modulate the PTP through CyP-D phosphorylation.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.