In this article, we study goodness of fit tests for some distributions of the innovations which are usually adopted to explain the behavior of financial time series. Inference is developed in the context of GARCH-type models. Functional bootstrap tests are employed, assuming that the conditional means and variances of the model are correctly specified. The performances of the functional tests are assessed with a Monte Carlo experiment, based on some of the most common distributions adopted in the financial framework. The results of an application to the series of squared residuals from a PARCH(1,1) model fitted to a series of foreign exchange rates returns are also shown.
Misspecification testing for the conditional distribution model in GARCH-type processes
GRIGOLETTO, MATTEO;
2009
Abstract
In this article, we study goodness of fit tests for some distributions of the innovations which are usually adopted to explain the behavior of financial time series. Inference is developed in the context of GARCH-type models. Functional bootstrap tests are employed, assuming that the conditional means and variances of the model are correctly specified. The performances of the functional tests are assessed with a Monte Carlo experiment, based on some of the most common distributions adopted in the financial framework. The results of an application to the series of squared residuals from a PARCH(1,1) model fitted to a series of foreign exchange rates returns are also shown.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.