Activation of nuclear transcription factors, breakdown of nuclear envelope and apoptosis represent a group of nuclear events thought to be modulated by changes in nucleoplasmic Ca2+ concentration, [Ca2+]n. Direct evidence for, or against, this possibility has been, however, difficult to obtain because measurements of [Ca2+]n are hampered by major technical problems. Here we describe a new approach for selectively monitoring Ca2+ concentrations inside the nucleus of living cells, which is based on the construction of a chimeric cDNA encoding a fusion protein composed of the photoprotein aequorin and a nuclear translocation signal derived from the rat glucocorticoid receptor. This modified aequorin (nuAEQ), stably expressed in HeLa cells, was largely confined to the nucleoplasm and thus utilized for monitoring [Ca2+]n in intact cells. No significant differences were observed between [Ca2+]n and cytosolic Ca2+ concentration ([Ca2+]i) under resting conditions. Upon stimulation of surface receptors linked to inositol-1,4,5-trisphosphate (InsP3) generation, and thus to intracellular Ca2+ signalling, the kinetics of [Ca2+]i and [Ca2+]n increases were indistinguishable. However, for the same rise in [Ca2+]i, the amplitude of [Ca2+]n increase was larger when evoked by Ca2+ mobilization from internal stores than when induced by Ca2+ influx across the plasma membrane. The functional significance of these transient nucleus-cytosol Ca2+ gradients is discussed.

Nuclear Ca2+ concentration measured with specifically targeted recombinant aequorin.

BRINI, MARISA;MURGIA, MARTA;POZZAN, TULLIO;RIZZUTO, ROSARIO
1993

Abstract

Activation of nuclear transcription factors, breakdown of nuclear envelope and apoptosis represent a group of nuclear events thought to be modulated by changes in nucleoplasmic Ca2+ concentration, [Ca2+]n. Direct evidence for, or against, this possibility has been, however, difficult to obtain because measurements of [Ca2+]n are hampered by major technical problems. Here we describe a new approach for selectively monitoring Ca2+ concentrations inside the nucleus of living cells, which is based on the construction of a chimeric cDNA encoding a fusion protein composed of the photoprotein aequorin and a nuclear translocation signal derived from the rat glucocorticoid receptor. This modified aequorin (nuAEQ), stably expressed in HeLa cells, was largely confined to the nucleoplasm and thus utilized for monitoring [Ca2+]n in intact cells. No significant differences were observed between [Ca2+]n and cytosolic Ca2+ concentration ([Ca2+]i) under resting conditions. Upon stimulation of surface receptors linked to inositol-1,4,5-trisphosphate (InsP3) generation, and thus to intracellular Ca2+ signalling, the kinetics of [Ca2+]i and [Ca2+]n increases were indistinguishable. However, for the same rise in [Ca2+]i, the amplitude of [Ca2+]n increase was larger when evoked by Ca2+ mobilization from internal stores than when induced by Ca2+ influx across the plasma membrane. The functional significance of these transient nucleus-cytosol Ca2+ gradients is discussed.
1993
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2432401
Citazioni
  • ???jsp.display-item.citation.pmc??? 46
  • Scopus 180
  • ???jsp.display-item.citation.isi??? 179
social impact