We experimentally and numerically tested the separability of two independent equally luminous monochromatic and white light sources at the diffraction limit, using optical vortices (OV). The diffraction pattern of one of the two sources crosses a fork hologram on its center generating the Laguerre-Gaussian (LG) transform of an Airy disk. The second source, crossing the fork hologram in positions different from the optical center, generates nonsymmetric LG patterns. We formulated a criterion, based on the asymmetric intensity distribution of the superposed LG patterns so created, to resolve the two sources at angular distances much below the Rayleigh criterion. Analogous experiments in white light allow angular resolutions which are still one order of magnitude below the Rayleigh criterion. The use of OVs might offer new applications for stellar separation in future space experiments.
Overcoming the Rayleigh Criterion Limit with Optical Vortices
TAMBURINI, FABRIZIO;ANZOLIN, GABRIELE;UMBRIACO, GABRIELE;BIANCHINI, ANTONIO;BARBIERI, CESARE
2006
Abstract
We experimentally and numerically tested the separability of two independent equally luminous monochromatic and white light sources at the diffraction limit, using optical vortices (OV). The diffraction pattern of one of the two sources crosses a fork hologram on its center generating the Laguerre-Gaussian (LG) transform of an Airy disk. The second source, crossing the fork hologram in positions different from the optical center, generates nonsymmetric LG patterns. We formulated a criterion, based on the asymmetric intensity distribution of the superposed LG patterns so created, to resolve the two sources at angular distances much below the Rayleigh criterion. Analogous experiments in white light allow angular resolutions which are still one order of magnitude below the Rayleigh criterion. The use of OVs might offer new applications for stellar separation in future space experiments.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.