A coupled finite element formulation for the hydro-thermo-mechanical behaviour of a water saturated and partially saturated porous material has been presented. This model is obtained as a result of a research in progress on the thermo-hydro-mechanical modelling for multiphase geomaterials undergoing inelastic strains. Numerical results of strain localisation in globally undrained samples of dense and medium dense sands have been presented. Vapour pressure below the saturation water pressure (i.e. water cavitation) develops at localisation in case of dense sands, as experimentally observed. A case of strain localisation induced by a thermal load in a sample where the displacements are constrained and evaporation takes place is also analysed.
Strain localisation simulation in non-isothermal multiphase geomaterials
SANAVIA, LORENZO;PESAVENTO, FRANCESCO;SCHREFLER, BERNHARD
2005
Abstract
A coupled finite element formulation for the hydro-thermo-mechanical behaviour of a water saturated and partially saturated porous material has been presented. This model is obtained as a result of a research in progress on the thermo-hydro-mechanical modelling for multiphase geomaterials undergoing inelastic strains. Numerical results of strain localisation in globally undrained samples of dense and medium dense sands have been presented. Vapour pressure below the saturation water pressure (i.e. water cavitation) develops at localisation in case of dense sands, as experimentally observed. A case of strain localisation induced by a thermal load in a sample where the displacements are constrained and evaporation takes place is also analysed.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.