Periodic density functional calculations have been used to investigate the structure and stability of epitaxial vanadium oxide films grown on the TiO2(001) anatase surface. The formation energy of films of V2O5 stoichiometry, initially low, is found to rapidly increase with the film thickness, at variance to what is obtained for reduced pseudomorphic VO2 films. This is in tune with results of oxygen-assisted molecular beam epitaxy. The oxidation of thick, viz. >2 monolayers (ML), VO2 films yields a c(2 x 2) reconstructed surface, in agreement with low energy electron diffraction. These films are composed by partially reduced inner V atoms in a distorted-octahedral environment, and by isolated surface dioxovanadium centers exhibiting a distorted trigonal-bipyramidal coordination. Single scattering simulations of X-ray photoelectron diffraction patterns have also been performed, taking both 2- and 3-ML surface surface-oxidized films as models. Results are in fair agreement with experiments referring to films grown in oxidizing conditions, which suggests that coherent vanadia ultrathin films could be formed in vanadia-titania catalysts. The electronic structure of the films has been finally studied, finding that the terminal oxygens carried by the surface dioxovanadium species have a strong nucleophilic character, which makes them potential active centers for selective oxidation catalysis.

First-Principles Studies of Vanadia-Titania Catalysts: Beyond the Monolayer

CASARIN, MAURIZIO;SAMBI, MAURO;
2005

Abstract

Periodic density functional calculations have been used to investigate the structure and stability of epitaxial vanadium oxide films grown on the TiO2(001) anatase surface. The formation energy of films of V2O5 stoichiometry, initially low, is found to rapidly increase with the film thickness, at variance to what is obtained for reduced pseudomorphic VO2 films. This is in tune with results of oxygen-assisted molecular beam epitaxy. The oxidation of thick, viz. >2 monolayers (ML), VO2 films yields a c(2 x 2) reconstructed surface, in agreement with low energy electron diffraction. These films are composed by partially reduced inner V atoms in a distorted-octahedral environment, and by isolated surface dioxovanadium centers exhibiting a distorted trigonal-bipyramidal coordination. Single scattering simulations of X-ray photoelectron diffraction patterns have also been performed, taking both 2- and 3-ML surface surface-oxidized films as models. Results are in fair agreement with experiments referring to films grown in oxidizing conditions, which suggests that coherent vanadia ultrathin films could be formed in vanadia-titania catalysts. The electronic structure of the films has been finally studied, finding that the terminal oxygens carried by the surface dioxovanadium species have a strong nucleophilic character, which makes them potential active centers for selective oxidation catalysis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2430898
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 36
  • OpenAlex ND
social impact