IF 1,604 Abstract: Although TNF antitumor activity has been demonstrated in many preclinical models and in non-comparative clinical trials, no evidence exists that TNF-based treatments increase patient survival. Moreover, due to systemic toxicity, TNF can only be administered through sophisticated locoregional drug-delivery systems in patients with some types of organ-confined solid tumors; as a corollary, the impossibility to administer TNF through the systemic route does not allow to test the effectiveness of this cytokine in other clinical settings for the treatment of a broader spectrum of tumor types. A challenge many researchers are tackling is to dissect the cascade of molecular events underlying tumor sensitivity to TNF so to fully explore the anticancer potential of this molecule. The rationale for the development of strategies aimed at sensitizing malignant cells to TNF is to exploit tumor-specific molecular derangements to modulate TNF biological activities and ultimately maximize its tumor-selective cytotoxicity. This would not only enhance the anticancer activity of current TNF-based locoregional regimens, but would also open the avenue to the systemic administration of this cytokine and thus to a much wider clinical experimentation of TNF in the oncology field. In this review we first summarize the molecular biology of TNF and its cancer-related properties then, the available findings regarding some among the most promising and best characterized TNF sensitizers are overviewed
Primary rectal carcinoma in patients with stage IV resectable disease at diagnosis
PUCCIARELLI, SALVATORE;RUGGE, MASSIMO;NITTI, DONATO;
2007
Abstract
IF 1,604 Abstract: Although TNF antitumor activity has been demonstrated in many preclinical models and in non-comparative clinical trials, no evidence exists that TNF-based treatments increase patient survival. Moreover, due to systemic toxicity, TNF can only be administered through sophisticated locoregional drug-delivery systems in patients with some types of organ-confined solid tumors; as a corollary, the impossibility to administer TNF through the systemic route does not allow to test the effectiveness of this cytokine in other clinical settings for the treatment of a broader spectrum of tumor types. A challenge many researchers are tackling is to dissect the cascade of molecular events underlying tumor sensitivity to TNF so to fully explore the anticancer potential of this molecule. The rationale for the development of strategies aimed at sensitizing malignant cells to TNF is to exploit tumor-specific molecular derangements to modulate TNF biological activities and ultimately maximize its tumor-selective cytotoxicity. This would not only enhance the anticancer activity of current TNF-based locoregional regimens, but would also open the avenue to the systemic administration of this cytokine and thus to a much wider clinical experimentation of TNF in the oncology field. In this review we first summarize the molecular biology of TNF and its cancer-related properties then, the available findings regarding some among the most promising and best characterized TNF sensitizers are overviewedFile | Dimensione | Formato | |
---|---|---|---|
Anticancer Res_2007.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso libero
Dimensione
64.13 kB
Formato
Adobe PDF
|
64.13 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.