Iqueye is a single photon counting very high speed photometer built for the ESO 3.5m New Technology Telescope (NTT) in La Silla (Chile) as prototype of a ‘quantum’ photometer for the 42m European Extremely Large Telescope (E-ELT). The optics of Iqueye splits the telescope pupil into four portions, each feeding a Single Photon Avalanche Diode (SPAD) operated in Geiger mode. The SPADs sensitive area has a diameter of 100 μm, with a quantum efficiency better than 55% at 500 nm, and a dark count less than 50 Hz. The quenching circuit and temperature control are integrated in each module. A time-to-digital converter (TDC) board, controlled by a rubidium oscillator plus a GPS receiver, time tags the pulses from the 4 channels. The individual times are stored in a 2 TeraByte memory. Iqueye can run continuously for hours, handling count rates up to 8 MHz, with a final absolute accuracy of each time tag better that 0.5 ns. A first very successful run was performed in Jan 2009; both very faint and very bright stars were observed, demonstrating the high photometric quality of the instrument. The first run allowed also to identify some opto-mechanical improvements, which have been implemented for a second run performed in Dec 2009. The present paper will describe the first version, the improvements implemented in the second one, and some of the obtained astronomical results.

Iqueye, a single photon counting very high speed photometer for the ESO 3.5m NTT

BARBIERI, CESARE;NALETTO, GIAMPIERO;VERROI, ENRICO;GRADARI, SERENA;ZACCARIOTTO, MIRCO
2010

Abstract

Iqueye is a single photon counting very high speed photometer built for the ESO 3.5m New Technology Telescope (NTT) in La Silla (Chile) as prototype of a ‘quantum’ photometer for the 42m European Extremely Large Telescope (E-ELT). The optics of Iqueye splits the telescope pupil into four portions, each feeding a Single Photon Avalanche Diode (SPAD) operated in Geiger mode. The SPADs sensitive area has a diameter of 100 μm, with a quantum efficiency better than 55% at 500 nm, and a dark count less than 50 Hz. The quenching circuit and temperature control are integrated in each module. A time-to-digital converter (TDC) board, controlled by a rubidium oscillator plus a GPS receiver, time tags the pulses from the 4 channels. The individual times are stored in a 2 TeraByte memory. Iqueye can run continuously for hours, handling count rates up to 8 MHz, with a final absolute accuracy of each time tag better that 0.5 ns. A first very successful run was performed in Jan 2009; both very faint and very bright stars were observed, demonstrating the high photometric quality of the instrument. The first run allowed also to identify some opto-mechanical improvements, which have been implemented for a second run performed in Dec 2009. The present paper will describe the first version, the improvements implemented in the second one, and some of the obtained astronomical results.
2010
Advanced Photon Counting Techniques IV
Conference on Advanced Photon Counting Techniques IV
9780819481450
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2429726
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact