A new time-frequency analysis of sea-level–controlled carbonate-platform cycles in the Middle Triassic Latemar massif (Dolomites, Italy) reveals a strong depositional signature with characteristics of dominant forcing by climatic precession. Modes corresponding to long and short precession components at 1/(21.7 k.y.) and 1/(17.6 k.y.) underwent amplitude modulations matching Earth’s orbital eccentricity with major frequency components at 1/(400 k.y.), 1/(125 k.y.), and 1/(98 k.y.). Obliquity appears as a minor component at 1/(35.4 k.y.). The Latemar signature thus constitutes the oldest pristine Milankovitch signature yet observed in the geologic record. Its fidelity rivals that of the Pliocene-Pleistocene record originally used to confirm the theory of orbitally forced climates. This evidence deepens a widely noted disagreement between radiometric and cyclostratigraphic time scales for the Latemar buildup. The Latemar cycles indicate that orbitally forced sea-level oscillations were operative in the ice-free Middle Triassic hothouse world.

Middle Triassic orbital signature recorded in the shallow-marine Latemar carbonate buildup (Dolomites, Italy)

PRETO, NEREO;DE ZANCHE, VITTORIO
2001

Abstract

A new time-frequency analysis of sea-level–controlled carbonate-platform cycles in the Middle Triassic Latemar massif (Dolomites, Italy) reveals a strong depositional signature with characteristics of dominant forcing by climatic precession. Modes corresponding to long and short precession components at 1/(21.7 k.y.) and 1/(17.6 k.y.) underwent amplitude modulations matching Earth’s orbital eccentricity with major frequency components at 1/(400 k.y.), 1/(125 k.y.), and 1/(98 k.y.). Obliquity appears as a minor component at 1/(35.4 k.y.). The Latemar signature thus constitutes the oldest pristine Milankovitch signature yet observed in the geologic record. Its fidelity rivals that of the Pliocene-Pleistocene record originally used to confirm the theory of orbitally forced climates. This evidence deepens a widely noted disagreement between radiometric and cyclostratigraphic time scales for the Latemar buildup. The Latemar cycles indicate that orbitally forced sea-level oscillations were operative in the ice-free Middle Triassic hothouse world.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2429073
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 78
  • ???jsp.display-item.citation.isi??? 77
  • OpenAlex ND
social impact