Using numerical methods we study the hyperbolic manifolds in a model of a priori unstable dynamical system. We compare the numerically computed manifolds with their analytic expression obtained with the Melnikov approximation. We find that, at small values of the perturbing parameter, the topology of the numerically computed stable and unstable manifolds is the same as in their Melnikov approximation. Increasing the value of the perturbing parameter, we find that the stable and unstable manifolds have a peculiar topological transition. We find that this transition occurs near those values of the perturbing parameter for which the error terms of Melnikov approximations have a sharp increment. The transition value is also correlated with a change in the behaviour of dynamical quantities, such as the largest Lyapunov exponent and the diffusion coefficient.
A numerical study of the hyperbolic manifolds in a priori unstable systems. A comparison with Melnikov approximations
GUZZO, MASSIMILIANO;
2010
Abstract
Using numerical methods we study the hyperbolic manifolds in a model of a priori unstable dynamical system. We compare the numerically computed manifolds with their analytic expression obtained with the Melnikov approximation. We find that, at small values of the perturbing parameter, the topology of the numerically computed stable and unstable manifolds is the same as in their Melnikov approximation. Increasing the value of the perturbing parameter, we find that the stable and unstable manifolds have a peculiar topological transition. We find that this transition occurs near those values of the perturbing parameter for which the error terms of Melnikov approximations have a sharp increment. The transition value is also correlated with a change in the behaviour of dynamical quantities, such as the largest Lyapunov exponent and the diffusion coefficient.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.