Aim of the paper is to revise Boolos’ reinterpretation of second-order monadic logic in terms of plural quantification ([4], [5]) and expand it to full second order logic. Introducing the idealization of plural acts of choice, performed by a suitable team of agents, we will develop a notion of plural reference. Plural quantification will be then explained in terms of plural reference. As an application, we will sketch a structuralist reconstruction of second-order arithmetic based on the axiom of infinite à la Dedekind, as the unique non-logical axiom. We will also sketch a virtual interpretation of the classical continuum involving no other infinite than a countable plurality of individuals.

To be is to be the object of a possible act of choice

CARRARA, MASSIMILIANO;
2010

Abstract

Aim of the paper is to revise Boolos’ reinterpretation of second-order monadic logic in terms of plural quantification ([4], [5]) and expand it to full second order logic. Introducing the idealization of plural acts of choice, performed by a suitable team of agents, we will develop a notion of plural reference. Plural quantification will be then explained in terms of plural reference. As an application, we will sketch a structuralist reconstruction of second-order arithmetic based on the axiom of infinite à la Dedekind, as the unique non-logical axiom. We will also sketch a virtual interpretation of the classical continuum involving no other infinite than a countable plurality of individuals.
2010
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2423602
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
  • OpenAlex ND
social impact