The theory of Schroedinger bridges for diffusion processes is extended to discrete-time Markov chains, and to some problems for quantum discrete-time processes. Taking into account the past-future lack of symmetry of the discrete-time setting, results bear a striking resemblance to the classical ones. In particular, the solution of the path space maximum entropy problems is always obtained from the prior model by means of a suitable multiplicative functional transformation.

Schroedinger Bridges for Discrete-Time, Classical and Quantum Markovian Evolutions.

PAVON, MICHELE;TICOZZI, FRANCESCO
2010

Abstract

The theory of Schroedinger bridges for diffusion processes is extended to discrete-time Markov chains, and to some problems for quantum discrete-time processes. Taking into account the past-future lack of symmetry of the discrete-time setting, results bear a striking resemblance to the classical ones. In particular, the solution of the path space maximum entropy problems is always obtained from the prior model by means of a suitable multiplicative functional transformation.
2010
Proceedings of the Sixteenth International Symposium on Mathematical Theoryof Network and Systems
16th International Symposium on Mathematical Theory of Network and Systems
9789633113707
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2420629
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact