We consider a sufficiently regular bounded open connected subset $\Omega$ of $\mathbb{R}^n$ such that $0 \in \Omega$ and such that $\mathbb{R}^n \setminus \cl\Omega$ is connected. Then we choose a point $w \in ]0,1[^n$. If $\epsilon$ is a small positive real number, then we define the periodically perforated domain $T(\epsilon) \equiv \mathbb{R}^n\setminus \cup_{z \in \mathbb{Z}^n}\cl(w+\epsilon \Omega +z)$. For each small positive $\epsilon$, we introduce a particular Dirichlet problem for the Laplace operator in the set $T(\epsilon)$. More precisely, we consider a Dirichlet condition on the boundary of the set $w+\epsilon \Omega$, and we denote the unique periodic solution of this problem by $u[\epsilon]$. Then we show that (suitable restrictions of) $u[\epsilon]$ can be continued real analytically in the parameter $\epsilon$ around $\epsilon=0$.

A Functional Analytic Approach for a Singularly Perturbed Dirichlet Problem for the Laplace Operator in a Periodically Perforated Domain

MUSOLINO, PAOLO
2010

Abstract

We consider a sufficiently regular bounded open connected subset $\Omega$ of $\mathbb{R}^n$ such that $0 \in \Omega$ and such that $\mathbb{R}^n \setminus \cl\Omega$ is connected. Then we choose a point $w \in ]0,1[^n$. If $\epsilon$ is a small positive real number, then we define the periodically perforated domain $T(\epsilon) \equiv \mathbb{R}^n\setminus \cup_{z \in \mathbb{Z}^n}\cl(w+\epsilon \Omega +z)$. For each small positive $\epsilon$, we introduce a particular Dirichlet problem for the Laplace operator in the set $T(\epsilon)$. More precisely, we consider a Dirichlet condition on the boundary of the set $w+\epsilon \Omega$, and we denote the unique periodic solution of this problem by $u[\epsilon]$. Then we show that (suitable restrictions of) $u[\epsilon]$ can be continued real analytically in the parameter $\epsilon$ around $\epsilon=0$.
2010
Numerical analysis and applied mathematics. International conference ofnumerical analysis and applied mathematics (ICNAAM 2010)
ICNAAM 2010: International Conference of Numerical Analysis and Applied Mathematics 2010
9780735408357
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2415730
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact