We give a general definition of a subadditive invariant i of Mod(R), where R is any ring, and the related notion of algebraic entropy of endomorphisms of R-modules, with respect to i. We examine the properties of the various entropies that arise in different circumstances. Then we focus on the rank-entropy, namely the entropy arising from the invariant ‘rank’ for Abelian groups. We show that the rank-entropy satisfies the Addition Theorem. We also provide a uniqueness theorem for the rank-entropy.

A general notion of algebraic entropy and the rank-entropy

SALCE, LUIGI;ZANARDO, PAOLO
2009

Abstract

We give a general definition of a subadditive invariant i of Mod(R), where R is any ring, and the related notion of algebraic entropy of endomorphisms of R-modules, with respect to i. We examine the properties of the various entropies that arise in different circumstances. Then we focus on the rank-entropy, namely the entropy arising from the invariant ‘rank’ for Abelian groups. We show that the rank-entropy satisfies the Addition Theorem. We also provide a uniqueness theorem for the rank-entropy.
2009
File in questo prodotto:
File Dimensione Formato  
10.1515_forum.2009.029.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 244.49 kB
Formato Adobe PDF
244.49 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2381843
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 30
  • OpenAlex ND
social impact