We propose a general framework for investigating a large class of stabilization problems in Markovian quantum systems. Building on the notions of invariant and attractive quantum subsystem, we characterize attractive subspaces by exploring the structure of the invariant sets for the dynamics. Our general analysis results are exploited to assess the ability of open-loop Hamiltonian and output-feedback control strategies to synthesize Markovian generators which stabilize a target subsystem, subspace, or pure state. In particular, we provide an algebraic characterization of the manifold of stabilizable pure states in arbitrary finite-dimensional Markovian systems, that leads to a constructive strategy for designing the relevant controllers. Implications for stabilization of entangled pure states are addressed by example.

Analysis and synthesis of attractive quantum Markovian dynamics

TICOZZI, FRANCESCO;
2009

Abstract

We propose a general framework for investigating a large class of stabilization problems in Markovian quantum systems. Building on the notions of invariant and attractive quantum subsystem, we characterize attractive subspaces by exploring the structure of the invariant sets for the dynamics. Our general analysis results are exploited to assess the ability of open-loop Hamiltonian and output-feedback control strategies to synthesize Markovian generators which stabilize a target subsystem, subspace, or pure state. In particular, we provide an algebraic characterization of the manifold of stabilizable pure states in arbitrary finite-dimensional Markovian systems, that leads to a constructive strategy for designing the relevant controllers. Implications for stabilization of entangled pure states are addressed by example.
2009
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2381303
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 91
  • ???jsp.display-item.citation.isi??? 86
  • OpenAlex ND
social impact